Abstract
Energy consumption has become a significant issue in businesses. It is known that the industrial sector has consumed nearly half of the world's total energy consumption in some cases. This research aims to propose the Grey Wolf Optimizer (GWO) algorithm to minimize energy consumption in the No Idle Permutations Flowshop Problem (NIPFP). The GWO algorithm has four phases: initial population initialization, implementation of the Large Rank Value (LRV), grey wolf exploration, and exploitation. To determine the level of machine energy consumption, this study uses three different speed levels. To investigate this problem, 9 cases were used. The experiments show that it produces a massive amount of energy when a job is processed fast. Energy consumption is lower when machining at a slower speed. The performance of the GWO algorithm has been compared to that of the Cuckoo Search (CS) algorithm in several experiments. In tests, the Grey Wolf Optimizer (GWO) outperforms the Cuckoo Search (CS) algorithm.
Publisher
Universitas Muhammadiyah Surakarta
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献