An Energy-Efficient No Idle Permutations Flow Shop Scheduling Problem Using Grey Wolf Optimizer Algorithm

Author:

Al-Imron Cynthia NovelORCID,Utama Dana Marsetiya,Dewi Shanty Kusuma

Abstract

Energy consumption has become a significant issue in businesses. It is known that the industrial sector has consumed nearly half of the world's total energy consumption in some cases. This research aims to propose the Grey Wolf Optimizer (GWO) algorithm to minimize energy consumption in the No Idle Permutations Flowshop Problem (NIPFP). The GWO algorithm has four phases: initial population initialization, implementation of the Large Rank Value (LRV), grey wolf exploration, and exploitation. To determine the level of machine energy consumption, this study uses three different speed levels. To investigate this problem, 9 cases were used. The experiments show that it produces a massive amount of energy when a job is processed fast. Energy consumption is lower when machining at a slower speed. The performance of the GWO algorithm has been compared to that of the Cuckoo Search (CS) algorithm in several experiments. In tests, the Grey Wolf Optimizer (GWO) outperforms the Cuckoo Search (CS) algorithm.

Publisher

Universitas Muhammadiyah Surakarta

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3