Clean Construction Protocol for the National Ignition Facility Beampath and Utilities

Author:

Sommer Stanley1,Stowers Irving1,Van Doren David2

Affiliation:

1. Lawrence Livermore National Laboratory

2. Jacobs Facilities Incorporated

Abstract

When the stadium-size National Ignition Facility (NIF) is fully operational at the Lawrence Livermore National Laboratory (LLNL), its 192 laser beams will deliver 1.8 megajoules (500 terawatts) of energy onto a target to create extremely high temperatures and pressures for inertial confinement fusion research as part of the Stockpile Stewardship Program. Due to the performance threshold and requirements of the NIF optical components, the optics and their surrounding beampath as well as the supporting utility systems must be fabricated, cleaned, assembled, and commissioned for precision cleanliness. This paper will provide an overview of the NIF cleanliness requirements, the Clean Construction Protocol (CCP) specifications for the beampath and clean utilities, and techniques for verifying the CCP specifications. The NIF cleanliness requirements define limits for molecular and particulate contamination. The goal of these limits is to prevent contamination of optical components. To prevent laser-induced damage and poor laser quality in the optical components, requirements for cleaning, assembly, installation, and commissioning in terms of particle and nonvolatile residue (NVR) levels are defined. The airborne cleanliness requirements in the interior of the beampath are Class 1 (ISO Class 3) particulate levels and a few parts-per-billion (ppb) airborne molecular contamination (AMC) (SEMI F21-95 MC-1,000). To achieve the cleanliness requirements for the beampath interior, a graded CCP approach is used as the NIF beampath and utilities are being constructed by a partnership between LLNL and the construction contractor, Jacobs Facilities Inc. (JFI) in a stadium-size Class 100,000 (ISO Class 8) building. Installation of the beampath components utilizes localized mini-environments of Class 100 (ISO Class 5) or better, with budgets of cleanliness exposure or "class-hours" for each clean connection. Garment, equipment, and operational considerations are evaluated with process verification. Verification of the beampath and utility cleanliness is performed with cleanliness exposure monitoring, evaluating particulates with "swipes" and the LLNL-developed Precision Cleanliness Verification System (PCVS), and measuring nonvolatile residues (NVRs) and AMCs with analytical chemistry techniques. Cleanliness verification results demonstrate that the CCP specifications are achieving the NIF cleanliness requirements for the beampath and clean utilities.

Publisher

Institute of Environmental Sciences and Technology (IEST)

Subject

Safety, Risk, Reliability and Quality,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3