Abstract
Geological materials such as Opalinus Clay show complex coupled hydro-mechanical behavior at laboratory and field scales. In the context of radioactive waste disposal, in-situ excavations might remain open for ventilation and operation for decades and, consequently, be susceptible to environmental changes such as desaturation. The saturation changes can then lead to mechanical deformation and desiccation cracks. To account for desiccation cracking at field scale, this study proposes an unsaturated hydro-mechanical model combined with the phase-field approach. Using laboratory and in-situ experimental data as input in the numerical model, the modeling framework is applied for simulating the hydro-mechanical effects and desiccation cracks reported in the Cyclic Deformation (CD-A) experiment carried out in the Opalinus Clay formation at the Mont Terri Rock Laboratory in Switzerland. Simulations with homogeneous and heterogeneous material properties generated from experimentally obtained ranges are carried out. Crack initiation and propagation show a good correlation with the monitored relative humidity range of the experiment. Practical information is summarized to motivate the application of the proposed formulation at different setups. Finally, possibilities to improve the framework and to reason simplification of more abstract models are indicated.
Funder
Bundesministerium für Bildung und Forschung
Publisher
The International Society for Porous Media (InterPore)
Reference87 articles.
1. Ambati, M., Gerasimov, T., & De Lorenzis, L. (2015). Phase-field modeling of ductile fracture. Computational Mechanics, 55(5), 1017–1040. https://doi.org/10.1007/s00466-015-1151-4
2. Amor, H., Marigo, J.-J., & Maurini, C. (2009). Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments. Journal of the Mechanics and Physics of Solids, 57(8):1209 – 1229. https://doi.org/10.1016/j.jmps.2009.04.011
3. Balay, S., Abhyankar, S., Adams, M. F., et al. (2019a). PETSc Users Manual. Technical Report ANL-95/11 - Revision 3.11, Argonne National Laboratory. https://publications.anl.gov/anlpubs/2019/12/155920.pdf
4. Bilke, L., Fischer, T., Naumov, D., et al. (2022 April). OpenGeoSys, Zenodo, version 6.4.3. https://doi.org/10.5281/zenodo.7092676
5. Bilke, L., Flemisch, B., Kalbacher, T., et al. (2019). Development of open-source porous media simulators: Principles and experiences. Transport in Porous Media, 130(1), 337–361. https://doi.org/10.1007/s11242-019-01310-1