The Origin of Surface Tension

Author:

Hassanizadeh S. MajidORCID

Abstract

In passing from the molecular description of matter to the continuum scale, many material properties and physical quantities emerge that do not exist at the molecular scale. They account for the way we observe lumped effects of molecular properties. So, they are linked to molecular properties and molecular constitution of materials. One such continuum property is surface tension and/or interfacial tension, a property we observe at the interface between two immiscible phases at continuum scale. How surface tension is related to molecular properties and the molecular description of materials is important. Unfortunately, the explanations provided in much of the literature are wrong and/or incomplete. Often, it is linked to the forces of cohesion between molecules of a liquid, which is only one of the intermolecular forces in a fluid; a force which is commonly almost negligible within a fluid. Also, it is said to be due to the “tendency of liquid surfaces at rest to shrink into the minimum surface area” (6), which is not really a physical principle. In this treatise, a rigorous explanation of the origin of surface tension is provided, based on intermolecular forces and the concept of upscaling from the molecular to the continuum scale. A full account of these intermolecular forces is given, along with an explanation of how these forces differ for molecules inside a liquid compared to those on its surface. It is explained that there exists a transition region with a finite thickness at the molecular scale, which is replaced by a sharp surface of discontinuity in material properties at the continuum scale. It is demonstrated that while the state of stress inside a liquid is compressive and isotropic, it becomes anisotropic in the interfacial region. Additionally, it is noted that while there is a compressive force in the direction normal to the interface, a less compressive or even tensile force exists in the tangential direction. It is this pressure deficit that is experienced as surface tension.

Funder

Deutsche Forschungsgemeinschaft

Publisher

The International Society for Porous Media (InterPore)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3