Abstract
Composite materials have been used from the earliest times, from wood, which is a naturally occurring composite of lignin and cellulose, through straw reinforced clay bricks to reinforced concrete. In the 20th century, a new breed of composite materials was developed using polymer matrices with high-performance reinforcement fibres. The great effect and uncompromising properties of advance composite materials have enabled the emergence of composites cut across all fields of application and all areas of work, just to mention a few aeronautic engineering, automobile engineering, and medicine, military and building construction. Therefore, with emphasis on building construction, advance composite material has played a vital role in today’s contemporary building construction method, by presenting its self as an alternative building construction material, its application has made the contemporary building construction much more flexible and achievable, compared to traditional building materials and its methods of construction. It further offers the building construction industry the technical know-how of having new possibilities of design styles, shapes and forms. Therefore, advance composite material proves it’s self to be a better and a new alternative building construction material that remains construction friendly and flexible based on its properties. This study, therefore, tends to provide an overview of advance composite material, its application as well as its role in today’s contemporary building.
Publisher
Alanya Hamdullah Emin Pasa Universitesi
Reference10 articles.
1. Akadiri, P. O., Chinyio, E. A., & Olomolaiye, P. O. (2012). Design of a sustainable building: A conceptual framework for implementing sustainability in the building sector. Buildings, 2(2), 126-152. https://doi.org/10.3390/buildings2020126
2. Berardi, U., & Dembsey, N. (2015). Thermal and Fire Characteristics of FRP Composites for Architectural Applications. Polymers, 7(11), 2276-2289. https://doi.org/10.3390/polym7111513
3. Carney, P., & Myers, J. J. (2003). Shear and Flexural Strengthening of Masonry Infill Walls with FRP for Extreme Out-of-Plane Loading. Architectural Engineering 2003. https://doi.org/10.1061/40699(2003)45
4. Chiewanichakorn, M., & Toranzo, L. (2011). Seismic Retrofit of St. Joseph Hospital Using Advanced Composite Materials for the Enhancement of Column, Slab, Wall and Beam Elements. Retrieved from: https://www.google.com.cy/#q=Seismic+Retrofit+of+St.+Joseph+Hospital+Using+Advanced+Composite+Materials+for+the+Enhancement+of+Column%2C+Slab%2C+Wall+and+Beam+Elements
5. Karbhari, V. M. (1998). Use of composite materials in civil infrastructure in Japan. WTEC report. International Technology Research Institute, World Technology (WTEC) Division. Available at: http://www.wtec.org/loyola/pdf/compce.pdf
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Composites of multilayer fabrics by modified roving – Experimental and theoretical study;Alexandria Engineering Journal;2024-09
2. Enhanced Performance of Exterior Building Facades with FRP Composite Materials;2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS);2024-01-28