Synthesis and biological evaluation of some novel benzoxazin-4-one and quinazolin-4-one derivatives based on anti-inflammatory commercial drugs

Author:

Khan Shah AlamORCID,Ahuja PriyankaORCID,Husain AsifORCID

Abstract

Benzoxazine and quinazoline are nitrogen-containing heterocyclic scaffolds found in various biologically active compounds. Due to their diverse biological actions, these heterocyclic rings serve as crucial frameworks for designing medicinal compounds. This study aimed to synthesize and assess in vivo anti-inflammatory, analgesic, and low ulcerogenic potential of a few novel benz[d][1,3]-oxazin-4-one and quinazolinone derivatives. Benzoxazinones (3a-e) were synthesized by cyclizing the carboxylic group (-COOH) of five nonsteroidal anti-inflammatory drugs viz., aceclofenac, ibuprofen, diclofenac, mefenamic acid and ketoprofen (2a-e) with anthranilic acid (1) using dry phosphorus oxychloride (POCl3) in pyridine. The corresponding quinazolinone derivatives (5a-e) were obtained by reacting 3a-e with isonicotinic acid hydrazide (4). Both sets of compounds were evaluated for their anti-inflammatory, analgesic effects, and ulcerogenicity in animal models. Structural characterization was performed using spectral analysis. Among the benzoxazinone derivatives, compound 2-(2-((2,6-dichlorophenyl) amino) benzyl)-4H-benzo[d][1,3]oxazin-4-one (3d) exhibited significant anti-inflammatory activity (62.61% inhibition of rat paw edema) and analgesic activity (62.36% protection in acetic acid-induced writhings) with tolerable gastrointestinal toxicity (2.67 ulcerogenicity index) compared to quinazolinone derivatives. The results of anti-inflammatory and analgesic activities of both the series are comparable with the respective, positive control. Compound 3d, a benzoxazinone-diclofenac hybrid, emerged as a lead molecule with potent anti-inflammatory, analgesic activities and moderate gastric toxicity showcasing the promising potential for further development.

Publisher

Mongolian Journals Online

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3