Soil moisture mapping using machine learning technique

Author:

Tsogtbaatar UndrakhtsetsegORCID,Dalantai Sainbayar,Batsaikhan Bayartungalag

Abstract

Soil moisture is an essential component in the energy cycle, water resource, hydrological regime, and processes of the land surface. Mapping and monitoring of soil moisture are crucial for the prevention of flood and drought, estimation of evapotranspiration, and water resource management. Using remote sensing to create soil moisture mapping at large scale has become one of the most energy and time-efficient methods in soil study. Thus, we aimed to map the soil moisture for Mongolia based on downscaled Soil Moisture Active Passive (SMAP) data by combining it with the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Land Surface Temperature (LST) of Moderate Resolution Imaging Spectroradiometer (MODIS) data using the Machine Learning-based Random Forest (RF) approach. The SMAP was positively correlated with NDVI (r=0.72, p<0.01) and EVI (r=0.73, p<0.01) but it was negatively correlated with LST (r= -0.66, p<0.05). The performance of the RF was high, and the correlation was r2=0.7. Therefore, our study suggests that the Machine Learning-based RF approach can be used to model soil moisture on a large scale. Машин сургалтын аргаар хөрсний чийгийг зураглах арга зүй Хөрсний чийг нь усны эргэлт, энергийн урсгалд чухал нөлөө үзүүлдгээс гадна, газрын гадаргын нөхцөл болон гадаргын усанд маш чухал нөлөөтэй. Иймд, хөрсний чийгийн зураглал болон мониторингийн судалгаа нь ган, зудын мониторинг, үерийн урьдчилсан сэрэмжлүүлэг болон усны нөөцийн менежментэд чухал үүрэг гүйцэтгэдэг судалгааны нэг юм. Сүүлийн үед, өргөн уудам газар нутагт хөрсний чийгийг зураглахын тулд зайнаас тандан судлалын аргыг ашиглах нь эдийн засаг болон цаг хугацааны хувьд үр ашигтай аргуудын нэг болоод байна. Иймд Монгол орны хэмжээнд хөрсний чийгийг зураглахдаа Soil Moisture Active Passive (SMAP) хиймэл дагуулын бүтээгдэхүүнийг ашиглан машин сургалтын санамсаргүй ой (RF)-н аргаар мэдээний орон зайн шийдийг сайжруулан зураглалаа. Ингэхдээ Moderate Resolution Imaging Spectroradiometer (MODIS) хиймэл дагуулын бүтээгдэхүүнүүдэд (ургамлын нормчилсон ялгаврын индекс (NDVI), ургамлын сайжруулсан индекс (EVI), газрын гадаргын температур (LST) тулгуурлан SMAP хиймэл дагуулын бүтээгдэхүүний орон зайн шийдийг сайжруулан өөрчилсөн, хамаарлыг тооцсон. Ингэхэд NDVI (r=0.72, p<0.01) болон EVI (r=0.73, p<0.01) нь SMAP-тай эерэг хамааралтай байсан бол LST (r= -0.66, p<0.05)-тай урвуу хамааралтай байсан. RF-н алгоритмаар машин сургалтын аргыг ашиглан Монгол орны хэмжээнд хөрсний чийгийг зураглахад загварын үр дүн гүйцэтгэл сайтай буюу хамаарал нь r2=0.7 гарсан. Иймд машин сургалтын санамсаргүй ойн алгоритмаар том хэмжээний газар нутгийг хамруулан хөрсний чийгийг загварчлах боломжтой болох нь судалгааны үр дүнгээс харагдаж байна. Түлхүүр үгс: Хөрсний чийг, машин сургалт, SMAP

Publisher

Mongolian Journals Online

Reference18 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3