Application of hyperspectral and radar data for a land cover classification

Author:

Damdinsuren AmarsaikhanORCID,Amarsaikhan Enkhmanlai,Damdinsuren Enkhjargal,Enkhtuya Jargaldalai,Gurjav Tsogzol,Altanchimeg Tsolmon

Abstract

In the modern digital image processing of remote sensing (RS) data, hyperspectral datasets combined with other multisource information are widely used for land cover classification and other thematic studies. The aim of this study was to integrate Hyperion hyperspectral image with dual-polarization Envisat synthetic aperture radar (SAR) data and compare the performances of support vector classification and spectral angle mapper methods on the combined datasets for a land cover discrimination. As a test site, an area covering the central and southern parts of the capital city of Ulaanbaatar was selected. The land cover classifications were conducted on two different band combinations (i.e. 4 bands of Hyperion sensor and Envisat dual-polarization data, and 99 bands of Hyperion sensor and Envisat dual-polarization data). The lowest accuracy demonstrated the spectral angle mapper and combination of 4 bands of Hyperion sensor and Envisat data, while the highest accuracy showed the support vector classifier and 99 bands of Hyperion sensor and Envisat data. As could be seen from the research, besides the applied classification methods, it is important to consider such factors as data structure, feature selection, and properties of image objects. Хайперспектрийн ба радарын мэдээ ашиглан газрын бүрхэвчийг ангилсан дүн ХУРААНГУЙ: Орчин үеийн зайнаас тандсан мэдээний тоон боловсруулалтад, хайперспектрийн мэдээг тандан судалгааны бусад эх сурвалжийн мэдээтэй нийлүүлэн газрын бүрхэвчийн ангилал болон өөр төрлийн сэдэвчилсэн судалгаанд ихээхэн ашиглаж байна. Энэхүү судалгаа нь Hyperion сенсорын хэт олон сувгийн мэдээг Envisat дагуулаас хос туйлшралаар хүлээн авсан синтетик апертурт радар (САР)-ын өгөгдөлтэй нийлүүлэн нэгдмэл мэдээ болгож, улмаар уг нийлмэл мэдээн дээрх газрын бүрхэвчийн ангиуд бие, биеэсээ хэрхэн ялгарч байгааг тулах векторын ангилал, спектрийн өнцгийн маппер зэрэг аргуудыг ашиглан, харьцуулан судлах үндсэн зорилготой. Судалгааны загвар талбай болгон Улаанбаатар хотын төвийн болон өмнөд хэсгийг хамарсан газрыг сонгон авч, газрын бүрхэвчийн ангиллыг сувгуудын 2 өөр хоршлол (Hyperion сенсорын 4 сувгийн болон Envisat дагуулын хос туйлшралын мэдээ, Hyperion сенсорын 99 сувгийн болон Envisat дагуулын мэдээ) дээр хийв. Hyperion сенсорын 4 сувгийн болон Envisat дагуулын мэдээг спектрийн өнцгийн маппер аргаар ангилсан дүн хамгийн бага нарийвчлалтай (80.24%) байсан бол Hyperion сенсорын 99 сувгийн болон Envisat дагуулын мэдээг тулах векторын аргаар ангилсан дүн хамгийн өндөр нарийвчлалтай (89.11%) байлаа. Судалгаанаас харахад, тухайн ангиллын үр дүнд, ашиглаж байгаа аргаас гадна, өгөгдлийн бүтэц, сувгийн сонголт, дүрс мэдээн дээрх биесийн шинж чанар зэрэг олон хүчин зүйлс нөлөөтэй гэдэг нь харагдаж байна.Түлхүүр үгс: САР-ын мэдээ, Тулах векторын арга, Спектрийн өнцгийн маппер, Нарийвчлал

Publisher

Mongolian Journals Online

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3