Affiliation:
1. CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech & Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
2. State Key Laboratory of Molecular Developmental Biology, Institute of Genetics & Developmental Biology, Chinese Academy of Sciences, Beijing 100190, China
Abstract
Fabrication of 3D scaffolds with patient-specific designs, high structural and component complexity, and rapid on-demand production at a low-cost by printing technique has attracted ever-increasing interests in tissue engineering. Cell-laden 3D bioprinting offers good prospects for future organ transplantation. Compared with nonbiological 3D printing, cell-laden 3D bioprinting involves more complex factors, including the choice of printing materials, the strategy of gelling, cell viability and technical challenges. Although cell-populated 3D bioprinting has so many complex factors, it has proven to be a useful and exciting tool with wide potential applications in regenerative medicine to generate a variety of transplantable tissues. In this review, we first overview the bioprinting materials, gelling strategies and some major applications of cell-laden 3D bioprinting, with main focus on the recent advances and current challenges of the field. Finally, we propose some future directions of the cell-populated 3D bioprinting in tissue engineering and regenerative medicine. [Formula: see text] In this review, we first overview the bioprinting materials, gelling strategies and some major applications of cell-populated 3D bioprinting, with main focus on the recent advances and current challenges of the field. Finally, we propose some future directions of the cell-laden 3D bioprinting in tissue engineering and regenerative medicine.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献