A peripheral blood transcriptome biomarker test to diagnose functional recovery potential in advanced heart failure

Author:

Deng Mario C1

Affiliation:

1. Professor of Medicine Advanced Heart Failure/Mechanical Support/Heart Transplant, David Geffen School of Medicine at UCLA, Ronald Reagan UCLA Medical Center, 100 Medical Plaza Drive, Suite 630, Los Angeles, CA 90095, USA

Abstract

Heart failure (HF) is a complex clinical syndrome that causes systemic hypoperfusion and failure to meet the body’s metabolic demands. In an attempt to compensate, chronic upregulation of the sympathetic nervous system and renin-angiotensin-aldosterone leads to further myocardial injury, HF progression and reduced O2 delivery. This triggers progressive organ dysfunction, immune system activation and profound metabolic derangements, creating a milieu similar to other chronic systemic diseases and presenting as advanced HF with severely limited prognosis. We hypothesize that 1-year survival in advanced HF is linked to functional recovery potential (FRP), a novel clinical composite parameter that includes HF severity, secondary organ dysfunction, co-morbidities, frailty, disabilities as well as chronological age and that can be diagnosed by a molecular biomarker.

Publisher

Future Medicine Ltd

Subject

Biochemistry (medical),Clinical Biochemistry,Drug Discovery

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An exercise immune fitness test to unravel mechanisms of Post-Acute Sequelae of COVID-19;Expert Review of Clinical Immunology;2023-05-17

2. The Role of Gut Microbiota in Heart Failure: When Friends Become Enemies;Biomedicines;2022-10-26

3. Initial independent validation of a genomic heart failure survival prediction algorithm;Expert Review of Precision Medicine and Drug Development;2021-02-10

4. The evolution of patient-specific precision biomarkers to guide personalized heart-transplant care;Expert Review of Precision Medicine and Drug Development;2020-10-28

5. Multi-dimensional COVID-19 short- and long-term outcome prediction algorithm;Expert Review of Precision Medicine and Drug Development;2020-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3