Comparing high-dimensional confounder control methods for rapid cohort studies from electronic health records

Author:

Low Yen Sia1,Gallego Blanca2,Shah Nigam Haresh1

Affiliation:

1. Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, CA 94305, USA

2. Center for Health Informatics, Australian Institute of Health Innovation, Macquarie University, Sydney, Australia

Abstract

Aims: Electronic health records (EHR), containing rich clinical histories of large patient populations, can provide evidence for clinical decisions when evidence from trials and literature is absent. To enable such observational studies from EHR in real time, particularly in emergencies, rapid confounder control methods that can handle numerous variables and adjust for biases are imperative. This study compares the performance of 18 automatic confounder control methods. Methods: Methods include propensity scores, direct adjustment by machine learning, similarity matching and resampling in two simulated and one real-world EHR datasets. Results & conclusions: Direct adjustment by lasso regression and ensemble models involving multiple resamples have performance comparable to expert-based propensity scores and thus, may help provide real-time EHR-based evidence for timely clinical decisions. [Box: see text]

Publisher

Future Medicine Ltd

Subject

Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3