Optimizing background therapy in treatment-experienced HIV-1 patients by rules-based algorithms and bioinformatics

Author:

Svärd Jenny1,Sönnerborg Anders23

Affiliation:

1. Unit of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.

2. Unit of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden

3. Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden

Abstract

In HIV-1-infected patients with extensive drug resistance, the optimization of background antiretroviral therapy is essential when changing drugs after treatment failure. The genotypic sensitivity score (GSS) and phenotypic sensitivity score (PSS), determined by rules-based algorithms, are employed to predict which drugs to select in a background therapy in order to receive the best treatment response when a new drug will be used, both in investigational trials of new agents and in clinical care. However, the outcome of the GSS/PSS approach for the purpose of assessing antiretroviral efficacy in patients with multiresistance has become more problematic, despite improvements such as drug potency weighting and adding information on treatment history. Bioinformatics-based methods are more recent attractive alternatives that have demonstrated equal or better precision compared with rules-based algorithms. This review aims to discuss the usefulness of GSS/PSS and bioinformatics, respectively, for the optimization of anti-HIV background therapy in heavily treatment-experienced patients.

Publisher

Future Medicine Ltd

Subject

Virology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3