Computational analysis of MRIs predicts osteosarcoma chemoresponsiveness

Author:

Djuričić Goran J1ORCID,Rajković Nemanja2ORCID,Milošević Nebojša2ORCID,Sopta Jelena P3ORCID,Borić Igor4ORCID,Dučić Siniša1ORCID,Apostolović Milan5ORCID,Radulovic Marko6ORCID

Affiliation:

1. Department of Radiology, University Children’s Hospital, School of Medicine, University of Belgrade, Belgrade, 11000, Serbia

2. Department of Biophysics, School of Medicine, University of Belgrade, Belgrade, 11000, Serbia

3. Institute of Pathology, School of Medicine, University of Belgrade, Belgrade, 11000, Serbia

4. St. Catherine Specialty Hospital, Zagreb, 10000, Croatia

5. Department of Orthopaedic, Institute for Orthopaedic Surgery, “Banjica”, Belgrade, 11040, Serbia

6. Department of Experimental Oncology, Institute for Oncology & Radiology of Serbia, Belgrade, 11000, Serbia

Abstract

Aim: This study aimed to improve osteosarcoma chemoresponsiveness prediction by optimization of computational analysis of MRIs. Patients & methods: Our retrospective predictive model involved osteosarcoma patients with MRI scans performed before OsteoSa MAP neoadjuvant cytotoxic chemotherapy. Results: We found that several monofractal and multifractal algorithms were able to classify tumors according to their chemoresponsiveness. The predictive clues were defined as morphological complexity, homogeneity and fractality. The monofractal feature CV for Λ′(G) provided the best predictive association (area under the ROC curve = 0.88; p <0.001), followed by   Y-axis intersection of the regression line  for  box fractal dimension, r²  for  FDM and tumor circularity. Conclusion: This is the first full-scale study to indicate that computational analysis of pretreatment MRIs could provide imaging biomarkers for the classification of osteosarcoma according to their chemoresponsiveness.

Funder

Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja

Publisher

Future Medicine Ltd

Subject

Biochemistry (medical),Clinical Biochemistry,Drug Discovery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3