Integrative genomics strategies to elucidate the complexity of drug response

Author:

Kasarskis Andrew,Yang Xia12,Schadt Eric34

Affiliation:

1. Sage Bionetworks, 1100 Fairview Ave N, Seattle, WA 98109, USA

2. Department of Integrative Biology & Physiology, Univeristy of California, Los Angeles, Terasaki Life Sciences Building, 610 Charles E. Young Dr. East, Los Angeles, CA 90095-7239, USA

3. Pacific Biosciences, 1380 Willow Road, Menlo Park, CA 94025, USA

4. Department of Genetics & Genomics Sciences, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1498, New York, NY 10029, USA

Abstract

Pharmacogenomic investigation from both genome-wide association studies and experiments focused on candidate loci involved in drug mechanism and metabolism has yielded a substantial and increasing list of robust genetic effects on drug therapy in humans. At the same time, reasonably comprehensive molecular data such as gene expression, proteomic and metabolomic data are now available for collections of hundreds to thousands of individuals. If these data are structured in a statistically robust and computationally tractable way, such as a network model, they can aid in the analysis of new pharmacogenomics studies by suggesting novel hypotheses for the regulation of genes involved in drug metabolism and response. Similarly, hypotheses taken from these same models can direct genome-wide association studies by focusing the genome-wide association studies analysis on a number of specific hypotheses informed by the relationships customarily seen between a gene’s expression or protein activity and genetic variation at a particular locus. Network models based on other sorts of systematic biological data such as cell-based surveys of drug effect on gene expression and mining of literature and electronic medical records for associations between clinical and molecular phenotypes also promise similar utility. Although surely primitive in comparison with what will be developed, these model-based approaches to leveraging the increasing volume of data generated in the course of patient care and medical research nevertheless suggest a huge opportunity to improve our understanding of biological systems involved in pharmacogenomics and apply them to questions of medical relevance.

Publisher

Future Medicine Ltd

Subject

Pharmacology,Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3