Warfarin-dosing algorithm based on a population pharmacokinetic/pharmacodynamic model combined with Bayesian forecasting

Author:

Sasaki Tomohiro1,Tabuchi Hiroko1,Higuchi Shun1,Ieiri Ichiro1

Affiliation:

1. Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812–8582, Japan.

Abstract

Aims: To develop a novel warfarin-dosing algorithm based on a previous population pharmacokinetic/pharmacodynamic (PK/PD) model with Bayesian forecasting to facilitate warfarin therapy. Materials & methods: Using information on CYP2C9 and VKORC1 genotypes, S-warfarin level, dose and international normalized ratio (INR) of prothrombin time, individual PK (apparent clearance of S-warfarin [CLs]) and PD (concentration resulting in 50% of Emax [EC50]) parameters were determined by Bayesian forecasting for 45 Japanese patients. Maintenance doses were described by multiple linear regression using individually estimated PK/PD parameters and INR values. The validity of the model and a comparison with other dosing methods were evaluated by bootstrap resampling and a cross-validation method. Results: The plasma concentration of S-warfarin and INR were accurately predicted from individual PK/PD parameters. The following final regression model for maintenance dose was obtained; maintenance dose = 11.2 × CLs + 0.91 × EC50 + 2.36 × INR – 9.67, giving a strong correlation between actual and predicted maintenance doses (r2 = 0.944). Bootstrap resampling and cross-validation showed robustness and a superior predictive performance compared with other dosing methods. On the other hand, the predictability without actual measurements (S-warfarin and INR values) and Bayesian inference was comparable to other dosing methods. Conclusion: A novel algorithm, based on the population PK/PD model combined with Bayesian forecasting, gave precise predictions of maintenance dose, leading to individualized warfarin therapy.

Publisher

Future Medicine Ltd

Subject

Pharmacology,Genetics,Molecular Medicine

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3