Plasma protein adsorption and biological identity of systemically administered nanoparticles

Author:

Chen Dongyu1,Ganesh Shanthi2,Wang Weimin3,Amiji Mansoor1

Affiliation:

1. Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA

2. Department of Pre-Clinical Oncology, Dicerna Pharmaceuticals, Inc., Cambridge, MA 02140, USA

3. Department of Chemistry and Formulation, Dicerna Pharmaceuticals, Inc., Cambridge, MA 02140, USA

Abstract

Although a variety of nanoparticles (NPs) have been used for drug delivery applications, their surfaces are immediately covered by plasma protein corona upon systemic administration. As a result, the adsorbed proteins create a unique biological identity of the NPs that lead to unpredictable performance. The protein corona on NPs could also impede active targeting, induce off-target effects, trigger particle clearance and even provoke toxicity. This article reviews the fundamentals of NP–plasma protein interaction, the consequences of the interactions, and provides insights into the correlations of protein corona with biodistribution and cellular delivery. We hope that this review will trigger additional questions and possible solutions that lead to more favorable developments in NP-based targeted delivery systems.

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3