Regeneration of insulin-producing islets from dental pulp stem cells using a 3D culture system

Author:

Yagi Mendoza Hiromi1,Yokoyama Tomomi1,Tanaka Tomoko1,Ii Hisataka1,Yaegaki Ken1

Affiliation:

1. Department of Oral Health, School of Life Dentistry at Tokyo, Nippon Dental University, 1-9-20, Fujimi, Chiyoda ku, 102-8159 Tokyo, Japan

Abstract

Aim: In this study, we aimed to establish the differentiation protocol of dental pulp stem cells (DPSCs) into pancreatic islets using a 3D structure. Materials & methods: DPSCs were differentiated in a 3D culture system using a stepwise protocol. Expression of β-cell markers, glucose-stimulated insulin secretion, and PI3K/AKT and WNT pathways were compared between monolayer-cultured pancreatic cells and islets. Results: Islet formation increased insulin and C-peptide production, and enhanced the expression of pancreatic markers. Glucose-dependent secretion of insulin was increased by islets. Pancreatic endocrine markers, transcriptional factors, and the PI3K/AKT and WNT pathways were also upregulated. Conclusion: Pancreatic islets were generated from DPSCs in a 3D culture system. This system could provide novel strategies for controlling diabetes through regenerative medicine.

Publisher

Future Medicine Ltd

Subject

Embryology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3