In situ 3D bioprinting of musculoskeletal tissues in orthopedic surgery

Author:

Blevins Kier Maddox1,Danilkowicz Richard M1ORCID,Fletcher Amanda N1,Allen Nicholas B1ORCID,Johnson Lindsey G1,Adams Samuel B1

Affiliation:

1. Department of Orthopedic Surgery, Duke University Medical Center, Durham, North Carolina, USA

Abstract

Annually, millions of Americans require some form of reconstructive surgery as the result of a traumatic injury, degenerative process or pathologic state. In the field of orthopedic surgery, the gold standard for augmenting bone, cartilage and soft tissue defects has been through the application of grafts, prostheses and soft-tissue flaps. Recently, there have been great advances within the field of tissue engineering including the development of 3D-bioprinting technology. Bioprinting uses biomaterials and cells to create 3D tissue-mimicking structures aimed at repairing or replacing damaged tissues. Further developments have led to in situ bioprinting which manufactures the tissue directly at the site of repair through handheld or portable 3D-bioprinting devices. Challenges still exist in implementing this technology. However, there is hope that one day this technology will be equipped for the operating room or clinic.

Publisher

Future Medicine Ltd

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3