EGFL7 affects the migration of epidermal stem cells in refractory diabetic wounds by regulating Notch signaling pathway

Author:

Chang Jinyuan1,Sun Yang1,Meng Xianxi1,Zeng Fanglin1,Wang Xiancheng1ORCID

Affiliation:

1. Department of Burn and Plastic Surgery, The Second Xiangya Hospital of Central South University, No. 139, Shaoshan South Road, Furong District, Changsha, Hunan, 410011, China

Abstract

Aim: This study aimed to explore the role of EGFL7 in the healing process of refractory diabetic wounds. Methods: Epidermal stem cells (ESCs) were isolated from healthy mice and diabetic mice, identified by immunofluorescence, transfected with EGFL7 overexpression and silencing lentiviral vectors, and treated with Notch pathway inhibitor (DAPT). Results: SiEGFL7 significantly inhibited the proliferation, invasion and migration of ESCs of healthy mice. DAPT prominently inhibited the expressions of Notch1, Notch2, Hes1 and Jag1 in ESCs of healthy mice induced by overexpressed EGFL7. Overexpressed EGFL7 promoted wound healing in diabetic mice with refractory wounds. Conclusion: EGFL7 affects the proliferation and migration of ESCs in refractory diabetic wounds by regulating the Notch signaling pathway.

Publisher

Future Medicine Ltd

Subject

Embryology,Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3