Nanoscale stimulation of osteoblastogenesis from mesenchymal stem cells: nanotopography and nanokicking

Author:

Pemberton Gabriel D1,Childs Peter2,Reid Stuart2,Nikukar Habib1,Tsimbouri P Monica1,Gadegaard Nikolaj1,Curtis Adam SG1,Dalby Matthew J1

Affiliation:

1. Centre for cell Engineering, Institute for Molecular, Cell & Systems Biology, College of Medical, Veterinary & Life Sciencies, University of Glasgow, Glasgow, G12 8QQ, UK

2. SUPA, Thin Film Centre, University of the West of Scotland, Paisley, PA1 2BE, UK

Abstract

Aim: Mesenchymal stem cells (MSCs) have large regenerative potential to replace damaged cells from several tissues along the mesodermal lineage. The potency of these cells promises to change the longer term prognosis for many degenerative conditions currently suffered by our aging population. We have endeavored to demonstrate our ability to induce osteoblatogenesis in MSCs using high-frequency (1000–5000 Hz) piezo-driven nanodisplacements (16–30 nm displacements) in a vertical direction. Materials & methods: Osteoblastogenesis has been determined by the upregulation of osteoblasic genes such as osteonectin (ONN), RUNX2 and Osterix, assessed via quantitative real-time PCR; the increase of osteocalcin (OCN) and osteopontin (OPN) at the protein level and the deposition of calcium phosphate determined by histological staining. Results: Intriguingly, we have observed a relationship between nanotopography and piezo-stimulated mechanotransduction and possibly see evidence of two differing osteogenic mechanisms at work. These data provide confidence in nanomechanotransduction for stem cell differentiation without dependence on soluble factors and complex chemistries. Conclusion: In the future it is envisaged that this technology may have beneficial therapeutic applications in the healthcare industry, for conditions whose overall phenotype maybe characterized by weak or damaged bones (e.g., osteoporosis and bone fractures), and which can benefit from having an increased number of osteoblastic cells in vivo.

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3