CDA gene polymorphisms and enzyme activity: genotype–phenotype relationship in an Italian–Caucasian population

Author:

Carpi Francesco M1,Vincenzetti Silvia2,Ubaldi Jessica1,Pucciarelli Stefania1,Polzonetti Valeria1,Micozzi Daniela1,Mignini Fiorenzo3,Napolioni Valerio4

Affiliation:

1. School of Biosciences & Biotechnologies, Via Gentile III da Varano, University of Camerino, 62032 Camerino, Italy

2. School of Veterinary Sciences, University of Camerino, Camerino, Italy

3. School of Pharmacy & Health Products, University of Camerino, Camerino, Italy

4. School of Biosciences & Biotechnologies, Via Gentile III da Varano, University of Camerino, 62032 Camerino, Italy. .

Abstract

Aim: To assess the distribution of CDA activity from whole blood of 142 healthy subjects, determining its main predictors among genetic (six CDA SNPs) and physiological factors (age and gender). Moreover, we performed a kinetic study of the two CDA protein variants (Q27 and K27) determined by the rs2072671 SNP. Materials & methods: CDA activity was assessed by HPLC. Selected CDA SNPs were genotyped by PCR-based methods. Recombinant CDA protein variants (Q27 and K27) were expressed in an Escherichia coli strain SØ5201 and kinetic assays were performed. Results: The mean value of CDA activity was 0.051 ± 0.024 mU/mg and followed a normal distribution in the study population. Carriers of the CDA*2B (-451T/-92G/-31Del/79C/435C) haplotype displayed higher CDA activity compared with the others. CDA -451G>A, -92A>G and 79A>C (K27Q) SNPs displayed significant associations with CDA activity. The best predictive model of CDA activity included the variables gender and CDA 79A>C (K27Q). Cytidine is the preferential substrate for the variant Q27. Conclusion: We suggest the analysis of both CDA activity and CDA 79A>C (K27Q) SNP in future prospective trials with cytidine analogs, alone or in combination, in order to identify the best marker to secure the administration of these anticancer therapies. Original submitted 22 October 2012; Revision submitted 11 March 2013

Publisher

Future Medicine Ltd

Subject

Pharmacology,Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3