Methylation patterns partition pancreatic cancer into distinct prognostic subtypes

Author:

Zhao Zhiming1,Li Mengyang1ORCID,Tan Xianglong1ORCID,Xu Dabin1,Liu Rong1ORCID

Affiliation:

1. Department of Hepatopancreatobiliary Surgery, The First Medical Center, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China

Abstract

In the initiation and progression of pancreatic cancer, DNA methylation plays a critical role. The present study attempts to explore specific prognosis subtypes based on DNA methylation data and develop an epigenetic signature to predict the overall survival (OS) of patients with pancreatic cancer.147 samples were included in the training cohort, whereas the validation cohort included 226 samples. The 298 OS-related methylation sites in the training cohort were selected for consensus clustering, and the authors identified three subtypes with a significant difference in prognosis. Cluster1 was associated with poor OS, low-grade disease and high lymph node involvement. In addition, we identified 33 specific methylation sites in Cluster1. Subsequently, we developed a robust qualitative signature consisting of 14 methylation sites to individually predict OS in the training cohort, and the predictive accuracy of this model was confirmed in the validation cohort. Functional enrichment analysis showed that the selected genes in the model were mainly enriched in known cancer-related pathways. Patients were divided into high- and low-risk groups by the model, and a significant difference in OS was observed between these groups. Classification based on the modeling of a specific DNA methylation site can reveal the heterogeneity of pancreatic cancer and provide guidance for clinicians in predicting the prognosis of pancreatic cancer and providing personalized treatment.

Publisher

Future Medicine Ltd

Subject

Cancer Research,Oncology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Epigenetic therapeutic strategies in pancreatic cancer;International Review of Cell and Molecular Biology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3