Effect of laser power ratios on sinterability and physical properties of 3D prototypes sintered using selective laser sintering

Author:

Gharate Twinkle1,Karanwad Tukaram1ORCID,Lekurwale Srushti1ORCID,Banerjee Subham1ORCID

Affiliation:

1. Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari-781101, Assam, India

Abstract

Aim: This study was intended to investigate the effect of laser power ratios (LPRs) on the sinterability and sintering performance of selective laser sintering (SLS) mediated 3D prototypes. Materials & methods: Physical mixtures (PMs) containing Kollidon SR (98.75% w/w) and IR-absorbing dye (1.25% w/w) were evaluated for flow characteristics and particle size. The same PMs were subjected to SLS-mediated prototyping at constant printing temperatures (feed bed temperature 30°C and print bed temperature 40°C) over a range of LPRs. Results & conclusion: With favoured particle size and flow properties, this PMs was found to be suitable for SLS-mediated 3D printing. Sinterability and sintering performance were improved incrementally throughout the range of studied LPRs. The best sintering performance in terms of dimensional accuracy and printing yield was achieved at the highest LPR (3.0). Scanning electron microscopy (SEM) depicted topography of cross-sectioned sintered printlets.

Publisher

Future Medicine Ltd

Subject

Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3