Prognostic biomarker value of binary and grayscale breast tumor histopathology images

Author:

Rajković Nemanja1,Vujasinović Tijana2,Kanjer Ksenija2,Milošević Nebojša T1,Nikolić-Vukosavljević Dragica2,Radulovic Marko2

Affiliation:

1. Department of Biophysics, School of Medicine, University of Belgrade, Višegradska 26/2, Belgrade 11000, Serbia

2. Department of Experimental Oncology, Institute for Oncology & Radiology, Pasterova 14, Belgrade 11000, Serbia

Abstract

Aim: Breast cancer prognosis is in the spotlight owing to its potentially major clinical importance in effective therapeutic management. Following our recent prognostic establishment of the fractal features calculated on binary breast tumor histopathology images, this study aimed to accomplish the first optimization of this methodology by direct comparison of monofractal, multifractal and co-occurrence algorithms in analysis of binary versus grayscale image formats. Patients & methods: The study included 93 patients with invasive breast cancer, without systemic treatment and a long median follow-up of 150 months. Results: Grayscale images provided a better prognostic source in comparison to binary, while monofractal, multifractal and co-occurrence image analysis algorithms exerted a comparable performance. Conclusion: The critical prognostic importance of the grayscale texture is revealed.

Publisher

Future Medicine Ltd

Subject

Biochemistry, medical,Clinical Biochemistry,Drug Discovery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3