Critical review of prostate cancer predictive tools

Author:

Shariat Shahrokh F1,Kattan Michael W2,Vickers Andrew J3,Karakiewicz Pierre I4,Scardino Peter T5

Affiliation:

1. Department of Surgery, Urology Service, Memorial Sloan–Kettering Cancer Center, NY, USA

2. Department of Quantitative Health Sciences, The Cleveland Clinic, OH, USA

3. Department of Epidemiology and Biostatistics, Memorial Sloan–Kettering Cancer Center, NY, USA

4. Cancer Prognostics and Health Outcomes Unit, University of Montreal, QC, Canada

5. Department of Surgery, Urology Service, Weill Cornell College of Medicine, Memorial Sloan–Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.

Abstract

Prostate cancer is a very complex disease, and the decision-making process requires the clinician to balance clinical benefits, life expectancy, comorbidities and potential treatment-related side effects. Accurate prediction of clinical outcomes may help in the difficult process of making decisions related to prostate cancer. In this review, we discuss attributes of predictive tools and systematically review those available for prostate cancer. Types of tools include probability formulas, look-up and propensity scoring tables, risk-class stratification prediction tools, classification and regression tree analysis, nomograms and artificial neural networks. Criteria to evaluate tools include discrimination, calibration, generalizability, level of complexity, decision analysis and ability to account for competing risks and conditional probabilities. The available predictive tools and their features, with a focus on nomograms, are described. While some tools are well-calibrated, few have been externally validated or directly compared with other tools. In addition, the clinical consequences of applying predictive tools need thorough assessment. Nevertheless, predictive tools can facilitate medical decision-making by showing patients tailored predictions of their outcomes with various alternatives. Additionally, accurate tools may improve clinical trial design.

Publisher

Future Medicine Ltd

Subject

Cancer Research,Oncology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3