Simulation of the long-term fate of superparamagnetic iron oxide-based nanoparticles using simulated biological fluids

Author:

Rabel Martin1,Warncke Paul1,Grüttner Cordula2,Bergemann Christian3,Kurland Heinz-Dieter4,Müller Robert5,Dugandžić Vera5,Thamm Jana1,Müller Frank A.4,Popp Jürgen56,Cialla-May Dana56,Fischer Dagmar1

Affiliation:

1. Pharmaceutical Technology & Biopharmacy, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany

2. Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany

3. Chemicell GmbH, Eresburgstraße 22-23, 12103 Berlin, Germany

4. Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany

5. Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany

6. Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany

Abstract

Aim: To simulate the stability and degradation of superparamagnetic iron oxide nanoparticles (MNP) in vitro as part of their life cycle using complex simulated biological fluids. Materials & methods: A set of 13 MNP with different polymeric or inorganic shell materials was synthesized and characterized regarding stability and degradation of core and shell in simulated biological fluids. Results: All MNP formulations showed excellent stability during storage and in simulated body fluid. In endosomal/lysosomal media the degradation behavior depended on shell characteristics (e.g., charge, acid-base character) and temperature enabling the development of an accelerated stress test protocol. Conclusion: Kinetics of transformations depending on the MNP type could be established to define structure-activity relationships as prediction model for rational particle design.

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3