Development of upconversion nanoparticle-conjugated indium phosphide quantum dot for matrix metalloproteinase-2 cancer transformation sensing

Author:

Chan Ming-Hsien12,Lai Chen-Yu3,Chan Yung-Chieh4,Hsiao Michael45,Chung Ren-Jei3,Chen Xueyuan2,Liu Ru-Shi146

Affiliation:

1. Department of Chemistry, National Taiwan University, Taipei 106, Taiwan

2. CAS Key Laboratory of Design & Assembly of Functional Nanostructures, & Fujian Key Laboratory of Nano-materials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China

3. Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan

4. Genomics Research Center, Academia Sinica, Taipei 115, Taiwan

5. Department of Biochemistry College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan

6. Department of Mechanical Engineering & Graduate, Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 106, Taiwan

Abstract

Aim: Matrix metalloproteinase-2 (MMP2) plays an important role in extracellular matrix remodeling, that is, it increases significantly during cancer progression. In this regard, MMP2 monitoring is important. Experiment: A well-designed MMP2-sensitive polypeptide chain was used to link indium phosphide quantum dots (InP QDs) with upconversion nanoparticles (UCNPs) to form a nanocomposite that was utilized as biosensor. Results: We produced a biosensor that can be recognized by MMP2 and determined the presence or absence of MMP2 in cells by identifying difference in fluorescence wavelength. The InP QDs modified the arginylglycylaspartic acid molecules as targeting ligand based on chitosan. Conclusion: The MMP2-based biosensor, named UCNP-p@InP-cRGD, is sensitive and can be applied for biosensing probes.

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3