Predicting Falls in the Nursing Homes via Recurrent Neural Network Models

Author:

Kravchenko Olga V1ORCID,Jin Peng2,Shan Xiaoyue1,Perez Eddie1,Munro Paul1,Boyce Richard D1

Affiliation:

1. University of Pittsburgh

2. Pennsylvania State University

Abstract

Background This study aimed to develop RNN algorithms to predict falls in nursing homes. Methods The MDS dataset and prescription drug exposure records were utilized to train RNN, LSTM, and GRU models for predicting falls within 90 days window. Results were compared to the previously evaluated CART-logit model. A ϕK correlation coefficient was used for feature analysis. Results RNNs performed similarly (AUROC ≈ 0.74). Feature analysis identified significant correlations for the delirium scale (ϕK = 0.63), use of antipsychotic medication (ϕK = 0.54), exposure to psychotropic medication (ϕK = 0.56), and cumulative number of days spent in the facility ( ϕK = 0.54). Conclusions All three models outperformed the CART-logit model, emphasizing significance of incorporating temporal aspects in fall prediction.

Publisher

Informa UK Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3