Immunotherapeutic targeting of established sarcoma in Swiss mice by tumor-derived antigen-pulsed NLGP matured dendritic cells is CD8+ T-cell dependent

Author:

Mallick Atanu1,Barik Subhasis1,Ghosh Sarbari1,Roy Soumyabrata1,Sarkar Koustav2,Bose Anamika1,Baral Rathindranath1

Affiliation:

1. Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India

2. Pediatric Hematology Oncology, University of Iowa Children’s Hospital, IA, USA

Abstract

Aim: Neem leaf glycoprotein (NLGP) matures human myeloid and mouse bone marrow-derived dendritic cells (DCs). (NLGP) also therapeutically restricts the mouse established sarcoma growth by activating CD8+ T cells along with increased proportion of tumor residing CD11c+ DCs. Here, we intended to find out whether CD8+ T cells become cytotoxic to sarcoma cells after presentation of sarcoma antigen by NLGP-matured DCs to restrict murine sarcoma growth. Materials & methods: NLGP was prepared from matured neem(Azadirachta indica) leaves. Solid sarcoma tumor in Swiss mice was developed by subcutaneous inoculation of sarcoma cells. GMCSF-IL-4 generated DCs were matured with NLGP and pulsed with sarcoma antigen for immunotherapy. Status of CD8+CD69+T cells was studied by flow cytometry and secretion of cytokines was measured by ELISA. RT-PCR was used to monitor the status of perforin, granzyme B. Results: NLGP-matured sarcoma antigen-pulsed DCs (DCNLGPTAg) inhibit mouse sarcoma growth. DCNLGPTAg immunization enhances CD8+ T-cell number within tumor-infiltrating lymphocytes and tumor-draining lymph nodes along with increased perforin and granzyme B expression. Antigen-specific T-cell proliferation and IFN-γ secretion were significantly higher in DCNLGP- and DCNLGPTAg-immunized mice groups. In vivo CD8+ T-cell depletion abrogated the DCNLGPTAg-mediated tumor growth restriction. Conclusion: DCNLGPTAg restricts CD8+ T-cell-dependent mouse established sarcoma growth, related to the optimum antigen presentation by DCs to CD8+ T cells.

Publisher

Future Medicine Ltd

Subject

Oncology,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3