Intrinsic targeting of inflammatory cells in the brain by polyamidoamine dendrimers upon subarachnoid administration

Author:

Dai Hui12,Navath Raghavendra S23,Balakrishnan Bindu1,Guru Bharath Raja2,Mishra Manoj K3,Romero Roberto2,Kannan Rangaramanujam M,Kannan Sujatha1

Affiliation:

1. Department of Pediatrics (Critical Care Medicine), Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA

2. Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health and Department of Health & Human Services (NICHD/NIH/DHHS), Detroit, MI 48201, USA

3. Department of Chemical Engineering & Material Science, Wayne State University, Detroit, MI 48202, USA

Abstract

Aim: Understanding the interactions between nanomaterials and disease processes is crucial for designing effective therapeutic approaches. This article explores the unusual neuroinflammation targeting of dendrimers (with no targeting ligands) in the brain, with significant consequences for nanoscale materials in medicine. Method: The in vivo biodistribution of fluorescent-labeled neutral generation-4- polyamidoamine dendrimers (∼4 nm) in a rabbit model of cerebral palsy was explored following subarachnoid administration. Results: These dendrimers, with no targeting ligands, were localizing in activated microglia and astrocytes (cells responsible for neuroinflammation), even in regions far moved from the site of injection, in newborn rabbits with maternal inflammation-induced cerebral palsy. Conclusion: This intrinsic ability of dendrimers to localize inactivated microglia and astrocytes can enable targeted delivery of therapeutics in disorders such as cerebral palsy, Alzheimer’s and multiple sclerosis.

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3