Hair follicle neogenesis induced by cultured human scalp dermal papilla cells

Author:

Qiao Jizeng1,Zawadzka Agatha1,Philips Erica1,Turetsky Anya1,Batchelor Susan2,Peacock Jillian2,Durrant Steven2,Garlick Darren2,Kemp Paul2,Teumer Jeff1

Affiliation:

1. Intercytex Ltd, 175E New Boston Street, Woburn, MA 01801, USA.

2. Intercytex Ltd, Innovation House, Crewe Road, Manchester, M23 9QR, UK

Abstract

Aim: To develop a method by which human hair follicle dermal papilla (DP) cells can be expanded in vitro while preserving their hair-inductive potential for use in follicular cell implantation, a cellular therapy for the treatment of hair loss. Materials & methods: DP cells were isolated from scalp hair follicles in biopsies from human donors. DP cell cultures were established under conditions that preserved their hair-inductive potential and allowed for significant expansion. The hair-inductive potential of cells cultured for approximately 36 doublings was tested in an in vivo flap-graft model. In some experiments, DiI was used to label cells prior to grafting. Results: Under the culture conditions developed, cultures established from numerous donors reproducibly resulted in an expansion that averaged approximately five population doublings per passage. Furthermore, the cells consistently induced hair formation in an in vivo graft assay. Grafted DP cells appeared in DP structures of newly formed hairs, as well as in the dermal sheath and in the dermis surrounding follicles. Induced hair follicles persisted and regrew after being plucked 11 months after grafting. Conclusion: A process for the propagation of human DP cells has been developed that provides significant expansion of cells and maintenance of their hair-inductive capability, overcoming a major technical obstacle in the development of follicular cell implantation as a treatment for hair loss.

Publisher

Future Medicine Ltd

Subject

Embryology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3