Gold nanoparticles-mediated photothermal therapy and immunotherapy

Author:

Liu Yang123,Crawford Bridget M12,Vo-Dinh Tuan123

Affiliation:

1. Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA

2. Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA

3. Department of Chemistry, Duke University, Durham, NC 27708, USA

Abstract

Cancer has been a significant threat to human health with more than eight million deaths each year in the world. Therefore, there is a significant need for novel technologies to effectively treat cancer and ultimately reduce cancer recurrences, treatment costs, number of radical cystectomies and mortality. A promising therapeutic platform for cancer is offered by nanoparticle-mediated therapy. This review highlights the development and applications of various nanoparticle platforms for photo-induced hyperthermia and immunotherapy. Taking advantage of gold's high biocompatibility, gold nanoparticles (GNPs) can be injected intravenously and accumulate preferentially in cancer cells due to the enhanced permeability and retention effect. Various gold nanoplatforms including nanospheres, nanoshells, nanorods, nanocages and nanostars have been used for effective photothermal treatment of various cancers. GNPs have also been used in immunotherapies, involving cancer antigen and immune adjuvant delivery as well as combination therapies with photothermal therapy. Among GNPs platforms, gold nanostars (GNS) have great therapeutic potential due to their unique star-shaped geometry that dramatically enhances light absorption and provides high photon-to-heat conversion efficiency due to the plasmonic effect. This photothermal process can be exploited to specifically ablate tumors and, more importantly, to amplify the antitumor immune response following the highly immunogenic thermal death of cancer cells. GNS-mediated photothermal therapy combined with checkpoint immunotherapy has been found to reverse tumor-mediated immunosuppression, thereby leading to the treatment of not only primary tumors but also cancer metastasis, as well as to induce effective long-lasting immunity, in other words, an anticancer ‘vaccine’ effect.

Publisher

Future Medicine Ltd

Subject

Oncology,Immunology,Immunology and Allergy

Cited by 163 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3