Epidemiology and virulence insights from MRSA and MSSA genome analysis

Author:

Lazarevic Vladimir1,Beaume Marie1,Corvaglia Anna2,Hernandez David1,Schrenzel Jacques1,François Patrice

Affiliation:

1. Genomic Research Laboratory, Geneva University Hospitals, CH-1211 Geneva 14, Switzerland

2. Department of Microbiology & Molecular Medicine, University Medical Centre, University of Geneva, 1211 Geneva 4, Switzerland

Abstract

Staphylococcus aureus is a major human pathogen responsible for a wide diversity of infections ranging from localized to life threatening diseases. From 1961 and the emergence of methicillin-resistant S. aureus (MRSA), this bacterium has shown a particular capacity to survive and adapt to drastic environmental changes and since the beginning of the 1990s it has spread worldwide. Until recently, S. aureus was considered as the prototype of a nosocomial pathogen but it has now been recognized as an agent responsible for outbreaks in the community. Several recent reports suggest that the epidemiology of MRSA is changing. Understanding of pathogenicity, virulence and emergence of epidemic clones within MRSA populations is not clearly defined, despite several attempts to identify common molecular features between strains that share similar epidemiological and/or virulence behavior. These studies included: pattern profiling of bacterial adhesins, analysis of clonal complex groups, molecular genotyping and enterotoxin content analysis. To date, all approaches failed to find a correlation between molecular determinants and clinical outcomes. We hypothesize that the capacity of the bacterium to become more invasive or virulent is determined by genetics. The utilization of massively parallel methods of analysis is therefore ideal to study the contribution of genetics. Therefore, this article focuses on the entire genome including coding sequences as well as noncoding sequences. This high resolution approach allows the monitoring micro- and macroevolution of MRSA and identification of specific genomic markers of evolution of invasive or highly virulent phenotypes.

Publisher

Future Medicine Ltd

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3