Photodynamic therapy with a cationic functionalized fullerene rescues mice from fatal wound infections

Author:

Lu Zongshun12,Dai Tianhong13,Huang Liyi134,Kurup Divya B1,Tegos George P135,Jahnke Ashlee67,Wharton Tim68,Hamblin Michael R9

Affiliation:

1. Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, MA 02114, USA

2. Tianjin Medical University General Hospital, Tianjin, China

3. Harvard Medical School, Boston, MA, USA

4. First Affiliated College & Hospital, Guangxi Medical University, Nanning, China

5. University of New Mexico School of Medicine, Albuquerque, NM, USA

6. Lynntech Inc., College Station, TX, USA

7. University of Toronto, Toronto, ON, Canada

8. Texas Biochemicals, College Station, TX, USA

9. Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA, USA.

Abstract

Aims: Fullerenes are under intensive study for potential biomedical applications. We have previously reported that a C60 fullerene functionalized with three dimethylpyrrolidinium groups (BF6) is a highly active broad-spectrum antimicrobial photosensitizer in vitro when combined with white-light illumination. We asked whether this high degree of in vitro activity would translate into an in vivo therapeutic effect in two potentially lethal mouse models of infected wounds. Materials & methods: We used stable bioluminescent bacteria and a low light imaging system to follow the progress of the infection noninvasively in real time. An excisional wound on the mouse back was contaminated with one of two bioluminescent Gram-negative species, Proteus mirabilis (2.5 × 107 cells) and Pseudomonas aeruginosa (5 × 106 cells). A solution of BF6 was placed into the wound followed by delivery of up to 180 J/cm2 of broadband white light (400–700 nm). Results: In both cases there was a light-dose-dependent reduction of bioluminescence from the wound not observed in control groups (light alone or BF6 alone). Fullerene-mediated photodynamic therapy of mice infected with P. mirabilis led to 82% survival compared with 8% survival without treatment (p < 0.001). Photodynamic therapy of mice infected with highly virulent P. aeruginosa did not lead to survival, but when photodynamic therapy was combined with a suboptimal dose of the antibiotic tobramycin (6 mg/kg for 1 day) there was a synergistic therapeutic effect with a survival of 60% compared with a survival of 20% with tobramycin alone (p < 0.01). Conclusion: These data suggest that cationic fullerenes have clinical potential as an antimicrobial photosensitizer for superficial infections where red light is not needed to penetrate tissue.

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3