Improved transfection in human mesenchymal stem cells: effective intracellular release of pDNA by magnetic polyplexes

Author:

Delyagina Evgenya1,Schade Anna1,Scharfenberg Dorothee1,Skorska Anna1,Lux Cornelia1,Li Wenzhong12,Steinhoff Gustav1

Affiliation:

1. Reference & Translation Center for Cardiac Stem Cell Therapy, Department of Cardiac Surgery, University of Rostock, Schillingallee 35, 18057 Rostock, Germany

2. Center for Biomaterial Development & Berlin Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow, Germany

Abstract

Aim: Magnetically guided transfection has been shown as a promising approach for the genetic modification of cells. We observed that polyethylenimine (PEI)-condensed pDNA, combined with magnetic nanoparticles (MNPs) via biotin–streptavidin interactions could provide higher transfection efficiency than pDNA/PEI alone, even without the application of a magnetic force. Therefore, we intended to investigate the beneficial properties of MNP-based transfection. Materials & methods: We performed three-color fluorescent labeling of magnetic transfection complexes and traced them inside human mesenchymal stem cells over time using confocal microscopy in order to study pDNA release kinetics by colocalization studies. Results: We demonstrated that MNP-combined pDNA/PEI complexes provide more rapid and efficient release of pDNA than pDNA/PEI alone, which could be explained by the retention of PEI on the surface of the MNPs due to strong biotin–streptavidin interactions. Conclusion: The process of pDNA liberation may significantly influence the efficiency of the transfection vector. Therefore, it should be carefully considered when creating novel gene delivery agents. Original submitted 15 August 2012; Revised submitted 27 February 2013

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3