Assessment of the imaging properties of 3D-printable material using dual energy computed tomography

Author:

Rowley Lisa M1ORCID,Davies Elizabeth M2,Chung Emma34

Affiliation:

1. Nuclear Medicine, University Hospitals Coventry & Warwickshire NHS Trust, University Hospital, Clifford Bridge Road, Coventry, CV2 2DX, UK

2. Medical Physics, University Hospitals of Leicester NHS Trust, Leicester Royal Infirmary, Infirmary Square, Leicester, LE1 5WW, UK

3. Faculty of Life Science & Medicine, Guy's Campus, King's College London, SE1 1UL, UK

4. Department of Cardiovascular Sciences, University of Leicester, Leicester, LE1 7RH, UK

Abstract

Aim: Assessment of the imaging properties of 3D-printable materials using dual energy computed tomography (DECT) to match clinical values for imaging phantoms. Methods: 3D-printed samples were imaged using DECT. Regions of interest were analyzed to assess spectral computed tomography (CT) numbers at various energies and measure the electron density (ρe) and effective atomic number (Zeff). Results: Electron density was proportional to the CT number for the materials assessed with Zeff between 6.43 and 7.01. The measured CT number increased with monochromatic energy for all but one sample. Conclusion: A single DECT scan provides valuable information regarding the properties of 3D-printable material due to the ease of measurement of ρe and Zeff. The majority of 3D-printed materials analyzed behaved like adipose tissue across a range of energies in CT imaging.

Funder

Aiju

Publisher

Future Medicine Ltd

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3