Microencapsulated stem cells for tissue repairing: implications in cell-based myocardial therapy

Author:

Paul Arghya1,Ge Yin2,Prakash Satya1,Shum-Tim Dominique2

Affiliation:

1. Biomedical Technology & Cell Therapy Research Laboratory, Department of Biomedical Engineering & Artificial Cells & Organs Research Centre, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Quebec, H3A 2B4, Canada

2. Divisions of Cardiac Surgery & Surgical Research, The Montreal General Hospital, MUHC, 1650 Cedar Avenue, Suite C9–169, Montreal, Quebec, H3G 1A4, Canada.

Abstract

Stem cells have the unique properties of self-renewal, pluripotency and a high proliferative capability, which contributes to a large biomass potential. Hence, these cells act as a useful source for acquiring renewable adult cell lines. This, in turn, acts as a potent therapeutic tool to treat various diseases related to the heart, liver and kidney, as well as neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease. However, a major problem that must be overcome before it can be effectively implemented into the clinical setting is a suitable delivery system that can retain an optimal quantity of the cells at the targeted site for a maximal clinical benefit; a system that will give a mechanical as well as an immune protection to the foreign cells, while at the same time enhancing the yields of differentiated cells, maintaining cell microenvironments and sustaining the differentiated cell functions. To address this issue we opted for a novel delivery system, termed the ‘artificial cells’, which are semipermeable microcapsules with strong and thin multilayer membrane components with specific mass transport properties. Here, we briefly introduce the concept of artificial cells for encapsulation of stem cells and investigate the application of microencapsulation technology as an ideal tool for all stem transplantations and relate their role to the emerging field of cellular cardiomyoplasty.

Publisher

Future Medicine Ltd

Subject

Embryology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3