Radiomics-based signature of breast cancer on preoperative contrast-enhanced MRI to predict axillary metastasis

Author:

Chen Danxiang1ORCID,Liu Xia2ORCID,Hu Chunlei1,Hao Rutian1,Wang Ouchen1,Xiao Yanling1

Affiliation:

1. Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China

2. Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China

Abstract

Aim: This study aimed to predict axillary metastasis using radiology features in dynamic contrast-enhanced MRI. Methods: This study included 243 breast lesions confirmed as malignant based on axillary status. Most outcome-predictive features were selected using four machine-learning algorithms. Receiver operating characteristic analysis was used to reflect diagnostic performance. Results: Least absolute shrinkage and selection operator was used to dimensionally reduce 1137 radiomics features to three features. Three optimal radiomics features were used to model construction. The logistic regression model achieved an accuracy of 97% and 85% in the training and test groups. Clinical utility was evaluated using decision curve analysis. Conclusion: The novel combination of radiomics analysis and machine-learning algorithm could predict axillary metastasis and prevent invasive manipulation.

Funder

Funding information Natural Science Foundation of Zhejiang Province

Publisher

Future Medicine Ltd

Subject

Cancer Research,Oncology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3