Affiliation:
1. Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
Abstract
Methylation of histone lysine and arginine residues constitutes a highly complex control system directing diverse functions of the genome. Owing to their immense signaling potential with distinct sites of methylation and defined methylation states of mono-, di- or trimethylation as well as their higher biochemical stability compared with other histone modifications, these marks are thought to be part of epigenetic regulatory networks. Biological principles of how histone methylation is read and translated have emerged over the last few years. Only very few methyl marks directly impact chromatin. Conversely, a large number of histone methylation binding proteins has been identified. These contain specialized modules that are recruited to chromatin in a methylation site- and state-specific manner. Besides the molecular mechanisms of interaction, patterns of regulation of the binding proteins are becoming evident.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献