Axonal degeneration as a self-destructive defense mechanism against neurotropic virus infection

Author:

Tsunoda Ikuo1

Affiliation:

1. Department of Pathology, Division of Cell Biology & Immunology, University of Utah School of Medicine, 30 North 1900 East, MREB, Room 218, Salt Lake City, Utah 84132, USA.

Abstract

Theiler’s murine encephalomyelitis virus (TMEV) and other neurotropic virus infections result in degeneration of each component of the neuron: apoptosis of the cell body, axonal (Wallerian) degeneration, and dendritic and synaptic pathology. In general, axonal degeneration is detrimental for hosts. However, axonal degeneration can be beneficial in the case of infection with neurotropic viruses that spread in the CNS using axonal transport. C57BL/WldS (WldS, Wallerian degeneration slow mutant) mice are protected from axonal degeneration. WldS mice infected with the neurovirulent GDVII strain of TMEV are more resistant to virus infection than wild-type mice, suggesting that axonal preservation contributes to the resistance. By contrast, infection with the less virulent Daniels strain of TMEV results in high levels of virus propagation in the CNS, suggesting that prolonged survival of axons in WldS mice favors virus spread. Thus, axonal degeneration might be a beneficial self-destruct mechanism that limits the spread of neurotropic viruses, in the case of less virulent virus infection. We hypothesize that neurons use ‘built-in’ self-destruct protection machinery (compartmental neurodegeneration) against neurotropic virus infection, since the CNS is an immunologically privileged site. Early induction of apoptosis in the neuronal cell body limits virus replication. Wallerian degeneration of the axon prevents axonal transport of virus. Dendritic and synaptic degeneration blocks virus transmission at synapses. Thus, the balance between neurodegeneration and virus propagation may be taken into account in the future design of neuroprotective therapy.

Publisher

Future Medicine Ltd

Subject

Virology

Reference99 articles.

1. CochranEJ: Neurodegenerative diseases. In:Neuropathology. A Volume in the Series, Foundations in Diagnostic Pathology. Prayson RA, Goldblum JR (Eds). Elsevier Churchill Livingstone, Philadelphia, USA,223–286 (2005).

2. Axonal Damage Revealed by Accumulation of β-APP in HIV-positive Individuals without AIDS

3. Cell death and plasticity after experimental spinal cord injury

4. Axonal Guillain-Barré syndrome: a critical review

5. Inside-Out versus Outside-In models for virus induced demyelination: axonal damage triggering demyelination

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3