Affiliation:
1. Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
Abstract
We aimed to fully understand the landscape of the skin cutaneous melanoma (SKCM) microenvironment and develop an immune prognostic signature that can predict the prognosis for SKCM patients. RNA sequencing data and clinical information were downloaded from the Cancer Genome Atlas and Gene Expression Omnibus databases. The immune-prognostic signature was constructed by LASSO Cox regression analysis. We calculated the relative abundance of 29 immune-related gene sets based on the mRNA expression profiles of 314 SKCM patients in the Cancer Genome Atlas training set. Hierarchical clustering was performed to classify SKCM patients into three clusters: immunity-high, -medium and -low. The values of our prognostic model in predicting disease progression, metastasis and immunotherapeutic responses were also validated. In conclusion, the prognostic model demonstrated a powerful ability to distinguish and predict SKCM patients’ prognosis.
Funder
Clinical Research Project of the First Affiliated Hospital of Xi'an Jiaotong University
International Cooperation Foundation Project of Shaanxi Province
Subject
Cancer Research,Oncology,General Medicine
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献