Antiarthritic and chondroprotective activity of Lakshadi Guggul in novel alginate-enclosed chitosan calcium phosphate nanocarriers

Author:

Samarasinghe Rasika M1,Kanwar Rupinder K1,Kumar Kuldeep2,Kanwar Jagat R1

Affiliation:

1. Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Molecular & Medical Research (MMR) Strategic Research Centre, Faculty of Health, Technology Precinct (GTP), Deakin University, Waurn Ponds, Victoria 3217, Australia

2. PG Scholars Post Graduate Ayurvedic College, Paprola, Kangra, Himachal Pradesh, India

Abstract

Aim: This study aimed to evaluate the antiarthritic and chondroprotective potentials of Lakshadi Guggul (LG) and Cissus quadrangularis encapsulated in novel alginate-enclosed chitosan–calcium phosphate nanocarriers (NCs) both in vitro in primary human chondrocytes and in vivo in mice with collagen-induced arthritis. Materials & methods: Chondrocytes exposed to IL-1β and osteoarthritis chondrocytes grown in an ex vivo inflammation-based coculture were incubated with different concentrations of herbals, and cell modulatory activities were determined. For in vivo studies, herbals and their encapsulated nanoformulations were administered orally to DBA/1 mice with collagen-induced arthritis. Results: C. quadrangularis and LG showed enhanced chondroprotective and proliferative activity in IL-1β-exposed primary chondrocytes, with LG showing the highest therapeutic potency. LG increased viability, proliferative and mitogenic activity, and inhibited cell apoptosis and mitochondrial depolarization. In vivo studies with LG and alginate-enclosed chitosan–calcium phosphate LG NCs revealed cartilage regenerative activity in those administered with the nanoformulation. The NCs were nontoxic to mice, reduced joint swelling and paw volume, and inhibited gene expression of MMPs and cytokines. Conclusion: The promising results from this study reveal, for the first time, the novel polymeric NC encapsulating LG as a potential therapeutic for rheumatic diseases. Original submitted 10 October 2013; Revised submitted 13 December 2013

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3