Machine-learning algorithms predict breast cancer patient survival from UK Biobank whole-exome sequencing data

Author:

Jang Bum-Sup12ORCID,Kim In Ah123ORCID

Affiliation:

1. Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, 13620, Korea

2. Department of Radiation Oncology, Seoul National University, College of Medicine, Seoul, Korea

3. Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Korea

Abstract

Aim: We tested whether machine-learning algorithm could find biomarkers predicting overall survival in breast cancer patients using blood-based whole-exome sequencing data. Materials & methods: Whole-exome sequencing data derived from 1181 female breast cancer patients within the UK Biobank was collected. We found feature genes (n = 50) regarding total mutation burden using the long short-term memory model. Then, we developed the XGBoost survival model with selected feature genes. Results: The XGBoost survival model performed acceptably, with a concordance index of 0.75 and a scaled Brier score of 0.146 in terms of overall survival prediction. The high-mutation group exhibited inferior overall survival compared with the low-mutation group in patients ≥56 years (log-rank test, p = 0.042). Conclusion: We showed that machine-learning algorithms can be used to predict overall survival in breast cancer patients from blood-based whole-exome sequencing data.

Funder

Seoul National University Big Data Institute

Seoul National University Bundang Hospital Research Fund

Korean Ministry of Science and Information & Communication Technology National Research Foundation

Publisher

Future Medicine Ltd

Subject

Biochemistry (medical),Clinical Biochemistry,Drug Discovery

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3