Translation of a circulating miRNA signature of melanoma into a solid tissue assay to improve diagnostic accuracy and precision

Author:

Laar Ryan Van1ORCID,King Samuel2,McCoy Richard2,Saad Mirette2,Fereday Sian1ORCID,Winship Ingrid1ORCID,Uzzell Catherine2,Landgren Anthony2

Affiliation:

1. Geneseq Biosciences, 555 St Kilda Road, Melbourne, Victoria, 3004, Australia

2. Australian Clinical Labs, 1868 Dandenong Road, Clayton, Victoria, 3168, Australia

Abstract

Aim: Successful treatment of cutaneous melanoma depends on early and accurate diagnosis of clinically suspicious melanocytic skin lesions. Multiple international studies have described the challenge of providing accurate and reproducible histopathological assessments of melanocytic lesions, highlighting the need for new diagnostic tools including disease-specific biomarkers. Previously, a 38-miRNA signature (MEL38) was identified in melanoma patient plasma and validated as a novel biomarker. In this study, MEL38 expression in solid tissue biopsies representing the benign nevi to metastatic melanoma spectrum is examined. Patients & methods: Nanostring digital gene expression assessment of the MEL38 signature was performed on 308 formalin-fixed paraffin-embedded biopsies of nevi, melanoma in situ and invasive melanoma. Genomic data were interrogated using hierarchical clustering, univariate and multivariate statistical approaches. Classification scores computed from the MEL38 signature were analyzed for their association with demographic data and histopathology results, including MPATH-DX class, AJCC disease stage and tissue subtype. Results: The MEL38 score can stratify higher-risk melanomas (MPATH-Dx class V or more advanced) from lower-risk skin lesions (class I–IV) with an area under the curve of 0.97 (p < 0.001). The genomic score ranges from 0 to 10 and is positively correlated with melanoma progression, with an intraclass correlation coefficient of 0.85 with stage 0–IV disease. Using an optimized classification threshold of ≥2.7 accurately identifies higher-risk melanomas with 89% sensitivity and 94% specificity. Multivariate analysis showed the score to be a significant predictor of malignancy, independent of technical and clinical covariates. Application of the MEL38 signature to Spitz nevi reveals an intrasubtype profile, with elements in common to both nevi and melanoma. Conclusion: Melanoma-specific circulating miRNAs maintain their association with malignancy when measured in the hypothesized tissue of origin. The MEL38 signature is an accurate and reproducible metric of melanoma status, based on changes in miRNA expression that occur as the disease develops and spreads. Inclusion of the MEL38 score into routine practice would provide physicians with previously unavailable, personalized genomic information about their patient’s skin lesions. Combining molecular biomarker data with conventional histopathology data may improve diagnostic accuracy, healthcare resource utilization and patient outcomes.

Publisher

Future Medicine Ltd

Subject

Biochemistry (medical),Clinical Biochemistry,Drug Discovery

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3