Hypoxic culture of human pluripotent stem cell lines is permissible using mouse embryonic fibroblasts

Author:

Badger Jennifer L12,Byrne Meg L12,Veraitch Farlan S1,Mason Chris1,Wall Ivan B3,Caldwell Maeve A4

Affiliation:

1. Department of Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK

2. Henry Wellcome Laboratories for Integrative Neuroscience & Endocrinology, Dorothy Hodgkin Building, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK

3. Department of Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.

4. Henry Wellcome Laboratories for Integrative Neuroscience & Endocrinology, Dorothy Hodgkin Building, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK.

Abstract

Aim: Hypoxia is used within in vitro stem cell culture to recreate conditions similar to the in vivo environment surrounding the early blastocyst, from which embryonic stem cells can be isolated. Traditionally, basic research has used a coculture feeder system to culture pluripotent stem cells; however, it is possible that lowered oxygen may restrict cellular metabolic activity of the inactivated mouse embryonic fibroblasts (iMEFs) by disrupting oxygen-dependent pathways, such as ATP production through aerobic respiration. In this work, we examined the potential to continue using routine culture methods, such as iMEFs, to support human pluripotent cell expansion under hypoxia instead of feeder-free methods that can cause cell instability and offer a poor cell attachment rate. Materials & methods: Metabolic activity and viability studies were carried out in normoxic and hypoxic conditions. Pluripotent stem cells were introduced into hypoxia on iMEFs and the rate of colony expansion was compared with normoxic conditions. In addition, pluripotent stem cells were grown in hypoxia for over 6 months to demonstrate maintenance of pluripotency. Immunocytochemistry and western blotting evaluated the activity of the hypoxic transcription factor, HIF1A. Results: Hypoxia does not significantly affect viability or metabolic activity of feeder cells, and there is no detrimental effect on the rate of pluripotent stem cell colony expansion when cells are cultured in hypoxia. In addition, hypoxic pluripotent stem cells maintain their pluripotent nature and ability to differentiate into the three germ layers. Conclusion: The traditional iMEF coculture method is suitable for use in hypoxia and does not need to be replaced with feeder-free systems for hypoxic culture of human pluripotent stem cell lines in basic research.

Publisher

Future Medicine Ltd

Subject

Embryology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3