Surface-stabilized lopinavir nanoparticles enhance oral bioavailability without coadministration of ritonavir

Author:

Jain Sanyog1,Sharma Jagadish M2,Jain Amit K2,Mahajan Rahul R2

Affiliation:

1. Center for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, SAS Nagar (Mohali), Punjab 160062, India.

2. Center for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, SAS Nagar (Mohali), Punjab 160062, India

Abstract

Aim: The aim of the present study was to prepare surface-stabilized nanoparticles (NPs) for oral bioavailability enhancement of lopinavir (LPN), a Biopharmaceutics Classification System class II antiretroviral drug that possesses low oral bioavailability due to its poor aqueous solubility and extensive metabolism by liver microsomal enzymes. Materials & methods: Surfactant-stabilized LPN-NPs were prepared by combination of antisolvent precipitation and high-pressure homogenization techniques using polyvinyl alcohol as a suitable stabilizer. LPN-NPs were freeze dried by a universal stepwise freeze-drying cycle using mannitol as the cryoprotectant. Pharmacokinetics after oral administration of LPN-NPs were evaluated in male Sprague–Dawley rats and were compared with free LPN coadministered with ritonavir (conventional formulation). Results & conclusion: Freeze-dried stabilized LPN-NPs possessed particle sizes of approximately 320 nm and a narrow particle size distribution (polydispersity index <0.2). The surface-stabilized LPN-NPs (without ritonavir) demonstrated a 3.11-fold enhancement in bioavailability in comparison to free LPN with ritonavir (conventional formulation). Original submitted 26 March 2012; Revised submitted 14 September 2012; Published online 25 January 2013

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3