Plasma-based biofunctionalization of vascular implants

Author:

Wise Steven G12,Waterhouse Anna3,Kondyurin Alexey4,Bilek Marcela M4,Weiss Anthony S56

Affiliation:

1. School of Molecular Bioscience, University of Sydney, NSW 2006, Australia; School of Molecular Bioscience G08, University of Sydney, NSW 2006, Australia

2. The Heart Research Institute, Sydney, NSW 2042, Australia

3. Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA

4. School of Physics, University of Sydney, NSW 2006, Australia

5. Bosch Institute, University of Sydney, Sydney, 2006, Australia.

6. Charles Perkins Centre, University of Sydney, Sydney, 2006, Australia

Abstract

Polymeric and metallic materials are used extensively in permanently implanted cardiovascular devices and devices that make temporary but often prolonged contact with body fluids and tissues. Foreign body responses are typically triggered by host interactions at the implant surface, making surface modifications to increase biointegration desirable. Plasma-based treatments are extensively used to modify diverse substrates; modulating surface chemistry, wettability and surface roughness, as well as facilitating covalent biomolecule binding. Each aspect impacts on facets of vascular compatibility including endothelialization and blood contact. These modifications can be readily applied to polymers such as Dacron® and expanded polytetrafluoroethylene, which are widely used in bypass grafting and the metallic substrates of stents, valves and pacemaker components. Plasma modification of metals is more challenging given the need for coating deposition in addition to surface activation, adding the necessity for robust interface adhesion. This review examines the evolving plasma treatment technology facilitating the biofunctionalization of polymeric and metallic implantable cardiovascular materials.

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3