Modulation of inflammatory signaling and cytokine release from microglia by celastrol incorporated into dendrimer nanocarriers

Author:

Boridy Sebastien1,Soliman Ghareb M12,Maysinger Dusica3

Affiliation:

1. Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC, H3G 1Y6, Canada

2. Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt

3. Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC, H3G 1Y6, Canada.

Abstract

Aim: This study investigates the capacity of a potent anti-inflammatory nanomedicine, celastrol, incorporated into poly(amidoamine) dendrimers, to inhibit endotoxin-mediated signaling in microglia. Materials & methods: Celastrol was incorporated into amino (Cel/G4-NH2) and hydroxyl (Cel/G4-OH) terminus poly(amidoamine) (G4) dendrimers. Cell viability, release of nitric oxide, IL-6, TNF-α and activation of MAPK (e.g., p38 and JNK) and NF-κB were assessed in endotoxin (i.e., lipopolysaccharide) stimulated microglial cells. Results: G4-OH and G4-NH2 increased celastrol aqueous solubility by seven- and 12-fold, respectively. G4-OH and Cel/G4-OH suppressed lipopolysaccharide-mediated release of proinflammatory mediators, such as nitric oxide and IL-6, but not TNF-α, without reducing microglial cell viability, while Cel/G4-NH2 potentiated cytotoxicity and cytokine release. Blockade of proinflammatory signaling was accompanied by attenuation of p38 MAPK activation. Conclusion: This study supports the potential use of poly(amidoamine) dendrimers for effective anti-inflammatory therapy in the chronically inflamed CNS. Original submitted 22 July 2011; Revised submitted 8 December 2011; Published online 4 April 2012

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3