Multimodal molecular imaging in the second near-infrared window

Author:

Wu Menglin12,Li Xue2,Mu Xiaoyu1,Zhang Xuening2,Wang Hao1,Zhang Xiao-Dong13

Affiliation:

1. Tianjin Key Laboratory of Brain Science & Neural Engineering, Academy of Medical Engineering & Translational Medicine, Tianjin University, Tianjin, 300072, China

2. Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China

3. Department of Physics & Tianjin Key Laboratory of Low Dimensional Materials Physics & Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China

Abstract

Near-infrared-II (NIR-II) fluorescence imaging has rapidly developed for the noninvasive investigation of physiological and pathological activities in living organisms with high spatiotemporal resolution. However, the penetration depth of fluorescence restricts its ability to provide deep anatomical information. Scientists integrate NIR-II fluorescence imaging with other imaging modes (such as photoacoustic and magnetic resonance imaging) to create multimodal imaging that can acquire detailed anatomical and quantitative information with deeper penetration by using multifunctional probes. This review offers a comprehensive picture of NIR-II-based dual/multimodal imaging probes and highlights advances in bioimaging and therapy. In addition, seminal studies and trends in multimodal imaging probes activated by NIR-II laser are summarized and several key points regarding future clinical translation are elucidated.

Funder

National Natural Science Foundation of China

Tianjin Health Research Project

,National Key Research and Development Program of China

the Innovation Foundation of Tianjin University, and CAS Interdisciplinary Innovation Team

National Natural Science Foundation of Tianjin

the Key Program of the Tianjin Health and Family Planning Commission

Outstanding Youth Funds of Tianjin

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3