Preparation and characterization of amoxapine- and naringin-loaded solid lipid nanoparticles: drug-release and molecular-docking studies

Author:

Jat Sandeep1ORCID,Bhatt Manini2,Roychowdhury Sanjana3,Dixit Vaibhav A3,Pawar Sachin Dattram4ORCID,Kulhari Hitesh24ORCID,Alexander Amit5ORCID,Kumar Pramod1ORCID

Affiliation:

1. Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, Guwahati, Sila Katamur (Halugurisuk), Changsari, Dist. Kamrup, Assam, 781101, India

2. Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education & Research, Guwahati, Sila Katamur (Halugurisuk), Changsari, Dist. Kamrup, Assam, 781101, India

3. Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research, Guwahati, Sila Katamur (Halugurisuk), Changsari, Dist. Kamrup, Assam, 78110, India

4. School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030, India

5. Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Guwahati, Sila Katamur (Halugurisuk), Changsari, Dist. Kamrup, Assam, 781101, India

Abstract

Aim: Amoxapine (AMX) has been reported to be metabolized by CYP3A4 and CYP2D6. Naringin (NG) has been reported to inhibit CYP enzymes. Therefore, the current work was designed to develop AMX solid lipid nanoparticles (AMX-SLNs) and NG-SLNs for better therapeutic performance. Materials & methods: AMX-SLNs and NG-SLNs were prepared and characterized. AMX and NG interactions with CYP450s were studied with molecular docking to rationalize the effectiveness of the combination. Results: AMX-SLNs and NG-SLNs showed nanometric size with a sustained in vitro drug-release profile. NG showed a higher predicted binding affinity for CYP3A4 and CYP2D6, suggesting the potential for inhibition. Conclusion: The developed formulations were thoroughly characterized along with molecular docking data indicating promising AMX and NG combinations that may show good therapeutic activity.

Publisher

Future Medicine Ltd

Subject

Development,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3